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 Faced with the rise of online learning platforms, predicting learners’ 

academic performance has become a major concern to personalize and 

enhance educational journeys. However, traditional predictive models 

struggle to effectively integrate emotional and social factors. This article 

introduces a hybrid predictive model that combines random forests (RF) for 

selecting the most relevant features and multiple regression (MR) to forecast 

academic performance. The data is sourced from three online learning 

platforms and encompasses both implicit traces (learner interactions and 

behaviors) and explicit traces (demographic characteristics). Following a 

selection and merging process, the final dataset comprises 1,003,392 records 

and 42 features, categorized into six types of indicators: cognitive, 

emotional, social, normative, contextual, and demographic. The results 

demonstrate that this hybrid model outperforms traditional approaches and 

other machine learning (ML) techniques in terms of predictive accuracy, 

achieving an R² of 0.9372 and a root mean square error (RMSE) of 0.1022. 

The incorporation of explicit and implicit traces helps better capture the 

intricate interactions among the different data dimensions, significantly 

enhancing prediction quality. This work represents a notable advancement in 

the field of academic performance prediction. It also sheds light on 

challenges associated with the increasing complexity of models, paving the 

way for future research to develop more generalizable approaches. 
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1. INTRODUCTION 

Against this background, in the era of digital education, predicting learners’ academic performance 

much more has become huge challenging, because of the emergence of e-learning systems, and their capacity 

to acquire large volume of data [1]. However, the digital traces of learners are heterogeneous and difficult to 

process. The literature review reveals a reality that the data for online learning is heterogeneous and complex, 

which presents tremendous difficulties for the traditional prediction models, and thus the new methods are 

required to be developed considering the advanced approaches such as machine learning (ML) [2]. 

Traditional predictive models that model only a handful of features have limitations to capture the richness 

and the variety of traces learners leave behind. Waheed et al. [3] note that typical prediction models, which 
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may only rely on simplistic features, such as demographics and grades, become inadequate to characterize 

the diversity and complexity of learner’s interactions/behaviors in virtual learning environments. These 

models find it difficult to integrate social interactions and emotional states, however, are crucial for precise 

academic performance predictions. Against this background, one key question is: how can a hybrid model 

better predict the learners’ academic performance in the online learning by integrating both the explicit and 

implicit traces? 

Khan and Ghosh [4] emphasize that the diversity of data generated by students in online learning 

environments, such as forum interactions, participation in activities, and engagement behaviors, cannot be 

fully leveraged by traditional predictive models. By focusing on a limited set of variables, traditional 

predictive models often miss the subtleties of the traces left by learners, thereby limiting their predictive 

effectiveness, especially in complex learning environments. In this context, it is essential to explore more 

robust approaches that integrate multiple dimensions of learner behavior and characteristics. Recent literature 

highlights the importance of considering multiple indicators: social, cognitive, emotional, normative, 

contextual, and demographic to better understand and predict academic performance [5]. However, several 

studies [6]–[8] combine these diverse dimensions within a unified model capable of handling both explicit 

(demographic data) and implicit (social, cognitive, emotional, normative, and contextual data) traces. 

This article aims to propose and evaluate a hybrid model for predicting learners’ academic 

performance by fully leveraging the potential of explicit and implicit data. The presented hybrid predictive 

model is based on advanced ML techniques and incorporates 42 features derived from six types of indicators. 

Our model is built from data collected on three online learning platforms, representing a wide range of 

learner behaviors and characteristics. Unlike previous approaches, this approach simultaneously exploits both 

explicit and implicit traces of learners, offering a more nuanced and systemic analysis of their academic 

performance. 

This work stands out for the model’s ability to grasp the complex interactions among various data 

dimensions through ML techniques, representing a significant advancement in predicting academic 

performance by surpassing the limitations of traditional approaches, particularly in terms of accuracy. With 

an R² of 0.9372, the model explains 93.72% of the variance in academic performance, highlighting its 

notable effectiveness in predicting academic outcomes through the combination of feature selection and 

multiple regression (MR). By fully leveraging data from interactions between learners and platforms, this 

work highlights the model’s effectiveness in predicting learners’ academic performance while opening up 

new perspectives for designing more tailored and personalized educational tools. 

 

 

2. LITERATURE REVIEW 

2.1. Predictive models of academic performance 

The prediction of learners’ academic performance is a widely studied research area, particularly in 

the context of online learning environments. Traditional predictive models primarily rely on linear regression 

techniques and ML methods such as random forests (RF), decision trees (DT), and support vector machines 

(SVM), as shown in Table 1. These approaches have proven effective in certain cases, especially when 

leveraging features such as previous grades, interactions with the platform, or learners’ demographic profiles. 

However, traditional models have some limitations, especially considering the interoperability between the 

different dimensions of data. Furthermore, these studies are based mainly on a few features, which limits the 

prediction accuracies. For example, recent efforts demonstrate that models based primarily on past academic 

performance or demographic characteristics do not account for the learner behaviors in online learning 

environments [9]. 
 

 

Table 1. Relevant studies classified by type of indicators and predictive algorithm used 
Type of indicators Algorithms Studies 

Emotional CNN, RF, FDN, KNN, DT [6], [10]–[12] 

Social SVR, KNN, RF, MR, SVM, DT, ANN, CNN, NB [5], [6], [8], [10], [13]–[15] 

Cognitive KNN, NB, CNN, LR, RF, ANN, FDN, DT, SVR, SVM [5], [7], [16]–[21] 
Normative DT, ANN, KNN, SVM, NB, RF, FDN, DNN [5], [6], [22], [23] 

Contextual DT, ANN, KNN, SVM, NB, DNN [5], [22], [24] 

Demographic DT, VSM, NB, KNN, RF [8], [7], [25], [26] 

Note: CNN=convolutional neural network; RF=random forests; FDN=feedforward deep network; KNN=k-nearest 

neighbors; DT=decision tree; SVR=support vector regression; MR=multiple regression; SVM=support vector 

machine; ANN=artificial neural network; NB=Naive Bayes; LR=logistic regression; DNN=deep neural network; 
VSM=vector space model 
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2.2. Integration of implicit and explicit traces 

Implicit traces, such as the perceptible interaction, emotions expressed, and engagement behavior, 

have great potential in predicting the academic performance. Recent work has underlined the impact of 

incorporating these implicit traces into explicit data, which in turn leads to improved, more faithful models. 

For example, Rizvi et al. [8] introduced an approach that forecasted occupation status with the use of social 

traces and demographic features, and obtained a significantly higher prediction score accuracy. Likewise,  

the inclusion of affective data into the prediction models, is consistently acknowledged as an essential 

element in the comprehension of learner’s engagement [27], [28]. Research by MacCann et al. [9] 

demonstrated that adding emotional indicators into predictor models could increase the prediction of 

academic performance by more than 15%. By employing RF for feature selection along with MR 

methodologies, it was independently demonstrated that this method well models emotional and behavioral 

data in student and enhances academic performance prediction. For example, Said et al. [29] showed the 

superior performance of RF in choosing informative feature for academic performance. They also concluded 

that applying simpler techniques (e.g., MR) gives results akin to more sophisticated models and is less 

demanding in terms of resources. This approach does not only facilitate the interpretation of the important 

factors affecting learners’ achievements, but also reduces computational requirements, which makes the 

method more applicable in resource-poor settings. 

 

2.3. Hybrid approaches in predictive models 

While deep learning techniques have gained popularity for predicting academic performance, 

especially due to their ability to model complex nonlinear relationships, they require significant 

computational resources and sometimes pose interpretation challenges. In contrast, hybrid approaches 

combining more traditional methods, such as RF for feature selection and MR for prediction, have recently 

demonstrated their effectiveness in modeling multidimensional data, including emotional and behavioral 

traces. For instance, Said et al. [29] demonstrated that the use of RF effectively selects the most relevant 

variables for academic performance while minimizing the risk of overfitting. Integrating these features into  

an MR model not only yields results comparable to deep learning models but also significantly reduces 

model complexity and resource requirements. These approaches thus offer a more transparent interpretation 

of the factors influencing learners’ performance while ensuring precise and accessible predictions in 

resource-constrained environments. 

 

 

3. CONCEPTUAL FRAMEWORK AND RESEARCH OPPORTUNITIES 

Although traditional approaches, such as RF and MR, have proven effective in feature selection and 

predicting academic performance, several challenges remain. Current models sometimes struggle to 

generalize their results when data is sourced from various learning platforms or when complex interactions 

between different types of data are involved [30]. Furthermore, few studies have truly explored the combined 

integration of multiple types of indicators such as social, cognitive, emotional, normative, contextual, and 

demographic indicators within a single predictive model using simple and accessible methods. Most research 

either focuses on a limited set of features or relies on more complex models, like neural networks, which 

require significant computational resources [31]–[33]. 

This article aims to fill this gap by proposing a hybrid model based on RF for feature selection and 

MR for predicting academic performance. This approach, while relatively lightweight in terms of computation, 

effectively models multidimensional data and offers a clear interpretation of the factors influencing student 

outcomes in online learning environments. By emphasizing simplicity and efficiency, this approach meets the 

needs of resource-limited systems while ensuring accuracy comparable to more complex methods. 

In fact, our approach is based on the theoretical framework of multimodal learning, which posits that 

academic performance is influenced by a complex interaction of cognitive, social, emotional, normative, 

contextual, and demographic factors. According to this perspective, each dimension of learning traces (implicit 

and explicit) uniquely contributes to the construction of knowledge and learner engagement [34]. Drawing on 

Bandura’s social learning theories [35] and Pintrich’s cognitive engagement models [36], our work explores 

how these diverse dimensions interact to impact academic success in online learning environments. 

 

 

4. METHOD 

This research work followed a hybrid model-based strategy using RF feature selection and MR to 

predict academic performance. Combining three online learning environments, this approach captures and 

models multi-dimensional data while taking into account diverse traces (social, cognitive, emotional, 

normative, contextual, and demographic). In this section, we describe the main stages of our work. 
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4.1. Data description 

We used a dataset constructed from three distinct online learning platforms, each offering a variety 

of courses and learning activities. The collected data includes learner traces from diverse educational 

environments, allowing for a wide range of behaviors and characteristics to be captured. In total, the dataset 

comprises 42 features, grouped into six types of indicators: social, cognitive, emotional, normative, 

contextual, and demographic. The demographic data includes information such as age, gender, ethnicity, 

participation in sports, music listening habits, and parental education level. Implicit traces include measures 

of social engagement (number of messages posted by the learner in forums, number of messages viewed by 

others, number of collaborative activities, number of activities related to discussion forums, individualized 

support, and parental support); cognitive engagement (number of approved assessments in course units, 

average grade achieved, number of resources explored, number of chapters explored, number of quiz-type 

activities, number of additional activities, number of volunteer works, and number of off-course quiz-type 

activities); emotional state (assessed from interactions on the platform) [34]; normative data covering aspects 

such as the number of active days, weekly study time, and absences; and finally, contextual indicators 

integrating data on types of activities followed and their frequency (number of repeated activities, number of 

content pages viewed, consultation of the platform’s homepage, number of videos explored, participation in 

questionnaires or surveys, total number of events, sum of clicks made by the learner, interactions with online 

educational content, contributions to an educational wiki, consultation of a shared sub-page, participation in 

online video conferencing activities, activity related to data manipulation, number of interactive activities 

based on HTML content, number of accesses to an external resource via a URL, consultation of a specific 

sub-page, participation in a glossary, interaction with a content folder, and consultation of an activity 

involving double discussions). 

 

4.2. Data pre-processing and analysis 

Before training the predictive model, rigorous data pre-processing was essential. This process 

involved several key steps. First, data cleaning was performed, which included removing missing or 

erroneous values, handling duplicates, and managing outliers. Next, normalization was applied to numerical 

variables to ensure that each feature had a balanced influence on the model; values were scaled to a common 

range, typically between 0 and 1. Finally, categorical features such as ethnicity, gender, and parental 

education level were converted into numerical format using techniques such as one-hot encoding, allowing 

them to be effectively integrated into the ML model. 

A descriptive analysis of the data was conducted to understand the distribution of variables and 

identify initial correlations between them. The data presented in Figure 1 highlights significant correlations 

between certain variables and academic performance, measured here by the grade point average (GPA), 

which represents the weighted average of grades obtained by a student. Specifically, strong correlations were 

observed with variables such as cumulative units evaluated approved (CUEvA), cumulative units grade 

(CUGrade), the number of chapters explored (nchapters), the number of videos watched (nplay_video), as 

well as other measured learning activities. However, it is worth noting that demographic indicators, such as 

gender, parental support, and parental education level, show significant correlations with GPA, thus 

highlighting the importance of considering these variables in improving predictions.  

 

4.3. Proposed hybrid model 

The proposed predictive model, as illustrated in Figure 2, is a hybrid model combining feature 

selection based on RF and MR. Our model combines the advantages of RF and MR to predict students’ 

academic performance. RF are used to select the most important features based on their degree  

of importance, with a threshold value of 0.5 or higher [37]. This threshold represents the midpoint of the 

feature importance scale, which ranges from 0 to 1, thus forming a natural cutoff between features with  

a significant impact and those with lesser influence. A threshold of 0.5 corresponds to features with at least  

a moderate or higher effect on academic performance, filtering out less impactful variables while retaining 

the most relevant ones. These selected features are then used as inputs for an MR model, which aims to 

capture the complex relationships between these features and academic performance. The MR model uses  

a cost function based on mean squared error to produce accurate predictions. By reducing the dataset during 

data testing, the model ensures its robustness and precision. The main objective of this hybrid model is to 

improve the accuracy of predictions of academic performance by leveraging the most relevant features 

identified by RF. 
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Figure 1. Pearson correlation coefficients with the GPA variable 
 

 

 
 

Figure 2. Flow of predictive model implementation 
 
 

4.4. Model evaluation 

To evaluate the performance of our hybrid model, we used several regression-appropriate metrics. 

The mean squared error or MSE was used to measure the discrepancy between predicted and actual values, 

while k-fold cross-validation ensured a robust evaluation by dividing the data into k subsets. The model 

utilizes an RF to select the most important features, followed by MR for the final prediction, thereby 

optimizing result accuracy while reducing overfitting. 

To assess the performance of our hybrid model, we used several regression metrics. The coefficient 

of determination (R²) measured the proportion of variance in the dependent variable that could be explained 

by the model (1), indicating its explanatory power. The mean squared error (MSE) and root mean squared 

error (RMSE) were used to quantify the accuracy of the predictions by evaluating the differences between the 

actual and predicted values, as in (2) and (3). Additionally, the mean absolute error (MAE) offered a more 

straightforward interpretation of the average deviation between predicted and actual outcomes, as in (4).  

To enhance the model’s robustness and minimize the risk of overfitting, we applied k-fold cross-validation, 

as illustrated in Figure 3, which involved testing the model on multiple subsets of the data. The hybrid model 

integrates an RF for selecting the most relevant features and an MR approach to refine predictions, thereby 

increasing accuracy while avoiding overfitting. 
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𝑅2 = 1 −
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𝑛
𝑖=1

∑ (𝑦𝑖−
𝑛
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𝑛
𝑖=1  (2) 
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𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑦𝑖|̂
𝑛
𝑖=1  (4) 

 

 

 
 

Figure 3. K-folds cross validation 

 

 

5. RESULTS AND DISCUSSION 

To evaluate the most influential features for predicting academic performance, our study applied  

an RF model to calculate importance scores. Features with a score equal to or greater than 0.5 were filtered, 

effectively reducing the dataset’s dimensionality while retaining the most relevant variables. Figure 4 

visually presents these input features, while Table 2 details the characteristics identified as the most 

significant. This approach has shed light on the key factors influencing academic performance and will serve 

as the foundation for our subsequent analyses. 
 

 

 
 

Figure 4. Graphical representation of feature importance scores 
 

 

The MR phase, applied to the selected features, demonstrated an exceptional ability to capture the 

complex relationships between these variables and academic performance (GPA). The results indicate 

remarkable accuracy of the model, as evidenced by a coefficient of determination R² of 0.9372, suggesting 

that the model explains 93.72% of the variance in academic performance. A study by Baashar et al. [38] 

achieved an R² of 0.89 using an artificial neural network (ANN) model, while our hybrid model reached 

0.9372, indicating a substantial improvement in predictive power. Furthermore, the prediction errors are 

extremely low, with a MSE of 0.0104, a RMSE of 0.1022, and a MAE of 0.0817. These metrics show  

a significant improvement over baseline models, as indicated in Table 3, highlighting the outstanding 

performance of the hybrid model in predicting academic performance. Moreover, this study stands out for 

integrating six types of indicators: cognitive, social, emotional, contextual, normative, and demographic, in 

contrast to previous works [5], [6], [8], which included only two, three, or four types of dimensions. These 

results highlight the remarkable performance of the hybrid model in predicting academic performance, 
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demonstrating the effectiveness of the approach that combines feature selection with MR. This synergy 

enhances prediction accuracy while reducing overall errors. As shown in Figure 5, the comparison of 

predicted and actual GPA values reflects this accuracy, with data points closely aligned around the ideal 

regression line, confirming the precision of the predictions. 
 

 

Table 2. Most significant features (importance score ≥0.5) 
Index Feature Importance 

1 CUEvA 0.99866980695132 

2 CUGrade 0.96722020595401 

3 nplay_video 0.90359167229051 
4 nforum_posts 0.88130615331932 

5 EmoState 0.86025487655442 

6 activity_type_oucollaborate 0.82612264023988 
7 sum_click 0.82091760343514 

8 activity_type_questionnaire 0.80424324553426 

9 nevents 0.80148122191554 
10 activity_type_forum 0.76780796050704 

11 explored 0.76296359685862 

12 viewed 0.74971104991562 
13 ndays_act 0.73695945514967 

14 nchapters 0.72486778905941 

15 Sports 0.71094928704572 
16 Absences 0.69394259333360 

17 activity_type_quiz 0.69175882932148 

18 Tutoring 0.67313543360429 
19 StudyTimeWeekly 0.67033847650382 

20 Extracurricular 0.66063171306639 

21 Volunteering 0.64558441972441 
22 Gender 0.56484258363454 

23 ParentalSupport 0.56409859717801 

24 ParentalEducation 0.55364603940077 
25 activity_type_externalquiz 0.54466617937774 

 

 

Table 3. Performance of ML algorithms 
Algorithm R² MSE RMSE MAE 

SVM 0.9094 0.0152 0.1234 0.0970 

MR 0.9097 0.0113 0.1063 0.0874 

RF 0.9096 0.0121 0.1100 0.0881 
Hybrid model 0.9372 0.0104 0.1022 0.0817 

 

 

 
 

Figure 5. Regression multiple model: predicted vs actual GPA 
 

 

The RF, when used for feature selection, proved to be an essential step while developing the model, 

as identified from the analysis of the results. As seen in Figure 6, some variables such as CUEvA, CUGrade, 

video viewing (nplay_video), social interactions, and forum activity (nforum_posts) seem to have an 

intriguing association with GPA. The 3D graphs indicate that these variables have a positive correlation with 

the academic performance of the learners: Figure 6(a) supports the idea that CUEvA and CUGrade are 
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positively related to performance and Figure 6(b) exhibits the relation between CUEvA, nplay video, and 

GPA. Figure 6(c) is the portrayal of the state where a participant’s EmoState is positive and simultaneously 

active on the forum which is expected to enhance GPA greatly. These outcomes are consistent with the 

findings of our prior research [28], which ascertained the elevated importance of forum participation and 

emotional state during GPA prediction. As shown in Figure 6(d), interaction was found to have a positive 

impact on collaborative activity, including the number of clicks, and achieved GPA, which confirms the 

previously stated hypothesis. 

According to Al-Zawqari et al. [39], feature selection using ML techniques leads to better model 

interpretability and performance, corroborating our results. Furthermore, engagement in extracurricular 

activities and parental support were also identified as key determinants of academic performance, thus 

supporting our conclusions on the importance of these characteristics [14], [40]. These findings collectively 

reinforce the importance of these factors in the context of online learning and underscores the need to 

consider them when evaluating learners’ academic performance. 

The performance of the regression model was assessed using k-fold cross-validation to measure its 

robustness and ability to generalize. Table 4 is for the results of the 5-fold cross-validation and Table 5 is for 

the results of the 10-fold cross-validation. In 5-fold cross-validation, the mean MSE across all folds was 

0.01326, with a very low standard deviation of 0.0047. This indicates that the model’s performance is 

consistent and stable across different subsets of the data. In this sense, Owusu-Boadu et al. [26] emphasize 

the importance of cross-validation in evaluating the robustness of models, which corroborates our results of 

consistent performance across the different folds. For 10-fold cross-validation, the mean MSE was also 

0.01367, with a slightly higher standard deviation of 0.0041. The consistency of the mean MSE in both  

5-fold and 10-fold validations, as well as the low standard deviations, underscore the model’s reliability. 

These results suggest that the model maintains good accuracy even when evaluated on different subsets of the 

data, thereby reinforcing its robustness and reliability. 
 

 

 
(a) 

 
(b) 

 

 
(c) 

 
(d) 

 

Figure 6. Four perspectives of a 3D visualization of the multiple linear regression model: (a) CUEvA vs 

CUGrade with respect to GPA, (b) CUEvA vs nplay_video with respect to GPA, (c) EmoState vs 

nforum_posts with respect to GPA, and (d) Collaborative activity vs sum_click with respect to GPA 
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Table 4. Evaluation outcomes using 5-fold cross-validation 
Fold 1 2 3 4 5 

MSE 0.0111 0.0112 0.0205 0.0121 0.0114 

Mean MSE (k=5): 0.01326 
Standard deviation of MSE (k=5): 0.0047 

 

 

Table 5. Evaluation outcomes using 10-fold cross-validation 
Fold 1 2 3 4 5 6 7 8 9 10 

MSE 0.0112 0.0124 0.0203 0.0157 0.0165 0.0232 0.0151 0.0108 0.0146 0.0119 

Mean MSE (k=10): 0.01367; Standard deviation of MSE (k=10): 0.0041 

 

 

One of the main contributions of this research lies in the integration of both explicit and implicit 

traces into a single predictive model. Unlike previous studies [5], [41], which were limited to the use of four 

types of indicators, as well as the study by Al-Tameemi [6], which was limited to three types of indicators, 

our model includes six categories of data, encompassing cognitive, emotional, social, normative, contextual, 

and demographic indicators. This diversity in predictive indicators allows for a better understanding of the 

complexity of learner behaviors and enhances the accuracy of predictions. This advancement highlights the 

importance of enriching models with multiple and varied factors to better understand students’ academic 

performance. 

However, although the hybrid model provides excellent results, it relies on simplifying assumptions 

about the relationships between variables. The complex and nonlinear interactions between certain features 

may make the interpretation of the model more challenging. While the proposed approach is robust, future 

research could explore alternative models, such as deep neural networks, to capture more subtle relationships 

between variables [39]. A potential limitation of our model lies in the absence of a temporal component, 

which could capture the evolution of learner behaviors over time. Furthermore, although feature selection 

helped reduce the dimensionality of the dataset, some non-selected variables may also impact the results and 

deserve further exploration to improve the model’s accuracy. 

One of the strengths of our methodology is the integration of advanced ML techniques, such as RF, 

for the selection of predictive variables. While many studies [6], [16], [25] omit details on their selection 

method, our approach relies on rigorous automatic feature selection techniques. This approach has allowed us 

to identify the most relevant variables while reducing the dimensionality of the dataset. Indeed, RF are 

widely recognized as one of the most popular methods in data science for feature selection, providing a solid 

foundation for our methodology [42]. 

The results obtained from this study have significant implications for online education. They can 

guide educators in implementing more personalized tracking systems, allowing them to identify at-risk 

learners based on their interactions. The integration of explicit and implicit factors into predictive models can 

help better understand the variables influencing academic success and thus personalize educational pathways. 

In the future, it would be beneficial to validate this model on more diverse datasets, including cultural 

interactions and varied learning methodologies. Moreover, the inclusion of temporal data would provide  

a finer analysis of the behavioral evolution of learners. The proposed hybrid approach, combining feature 

selection by RF and MR, could also enable real-time identification of at-risk students and provide them with 

targeted support, thus fostering a proactive and effective teaching approach. 

 

 

6. CONCLUSION 

The advent of artificial intelligence is disrupting traditional teaching methods, paving the way for  

a new era of online learning. This study proposes a hybrid model combining feature selection by RF and MR to 

predict academic performance online, optimizing variable relevance while reducing complexity. The distinctive 

specificity of this model lies in the joint integration of indicators belonging to six complementary dimensions 

(cognitive, emotional, social, normative, contextual, and demographic), extracted from both explicit and implicit 

traces stemming from learner interactions. This multidimensional approach aims to be more comprehensive 

than those limited to three or four dimensions, although it could still be enriched by adding other factors, 

whether or not they pertain to additional dimensions. Such an extension would undoubtedly allow for an even 

more faithful and nuanced modeling of the factors influencing learners’ academic performance. Additionally, 

the inclusion of a selective module based on ML techniques enhances the model’s performance by identifying 

the most influential features while effectively reducing data complexity. 

The proposed predictive model, integrating six types of indicators, significantly improves academic 

performance prediction with an R² of 0.9372 (93.72%), thereby outperforming the 89% achieved by 
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compared ANN models, as well as the performances of SVM, MR, and RF, while substantially reducing 

prediction errors (MSE=0.0104, RMSE=0.1022, MAE=0.0817). The generalization capability of our 

regression model was confirmed through k-fold cross-validation, with similar average MSEs (0.01326 for  

5-fold with a standard deviation of 0.0047, and 0.01367 for 10-fold with a standard deviation of 0.0041), thus 

demonstrating stable and reliable performance across different data subsets. These results open promising 

perspectives for a better understanding of the determinants of academic success, while providing teachers and 

instructional designers with more effective predictive tools to anticipate learners’ needs and support them in a 

personalized manner.  

The proposed approach surpasses the limitations of traditional methods by offering a solution better 

suited to the specificities of complex and heterogeneous datasets encountered in online learning 

environments. For future research, it would be relevant to explore the addition of new dimensions or 

supplementary indicators likely to enrich the model and further improve prediction accuracy. The application 

of more advanced learning techniques, including hybrid models or those derived from generative artificial 

intelligence, as well as testing in diverse educational contexts, would also allow a more refined evaluation of 

the robustness and generalizability of our approach. 
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