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 The regression discontinuity design (RDD) can be used for evaluating cut-

score based educational interventions. The design enables researchers and 

evaluators to estimate the local causal effect of an intervention provided to 

those who are most at-risk. In certain educational evaluations, an RDD with 

multiple cutoffs can also be applied, where different cutoffs across 

classrooms or schools are used to assign students to the intervention 

condition. The availability of multiple cutoffs allows estimation of a pooled 

average treatment effect across cutoffs and/or individual estimates at each 

cutoff location, allowing for the possibility of heterogeneous treatment 

effects. The purpose of this paper is to demonstrate the design and analysis 

of the multiple-cutoff regression discontinuity (MCRD) design for the 

evaluation of need-based educational programs. Using data obtained from a 

kindergarten mathematics intervention for low achieving students, we 

illustrate the utility of the MCRD design for examining the average and 

potential variability of the regression discontinuity (RD) treatment effect. 

Implications for evaluation research and practice in education are discussed. 
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1. INTRODUCTION 

Although the randomized control trial (RCT) provides the most straightforward route to causal 

inference, practical and ethical concerns can make its implementation in educational evaluation contexts 

challenging [1], [2]. For example, when an intervention program or service is offered only to students most in 

need, the mechanism by which students are assigned to conditions is predetermined by program 

administrators. However, if service eligibility is identified solely on the basis of a cutscore on preprogram 

measure (e.g., income level, reading score), researchers and evaluators may be able to productively leverage 

the assignment mechanism that is used to systematically allocate program resources. Cutscore-based 

assignment yields a regression discontinuity (RD) design that facilitates causal inference as the process of 

assignment to treatment conditions is completely known and can be accounted for in the impact model [3]. 

The RD design has become an increasingly popular alternative for supporting causal inference in 

program evaluation and other field-based research contexts [4], [5]. The attractiveness of RD stems from its 

relatively simple structure and fit with the need-based service delivery practices that are common in applied 

settings. The structure is simple as only an assignment variable that completely determines the allocation of 

individuals to conditions (i.e., those scoring on one side of a cutoff score receive treatment and those on the 

https://creativecommons.org/licenses/by-sa/4.0/
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other side do not) and scores on an outcome of interest are needed. Although the nonrandom distribution of 

individuals or units to conditions would seem to invalidate the design, incorporating the assignment variable 

and the treatment indicator in the analysis of program outcomes establishes conditional independence 

between treatment assignment and outcomes [6]. The key idea is that individuals just below and just above 

the cutoff are assumed to be similar in all respects (e.g., demographic characteristics), except for whether 

they received the treatment. Therefore, any difference in outcomes between the two groups can be attributed 

to the treatment [3], [6]. Despite this practical advantage, the basic RD design has several limitations that can 

reduce its utility. The basic RD design is less efficient than a comparable RCT due to the high correlation 

between the assignment variable and the binary treatment indicator, thus requiring more cases for the same 

statistical power [7]. Additionally, in the basic RD design, causal inference is limited to the cutoff as 

treatment and control cases do not overlap beyond the cutoff value [8]. Consequently, for those interested in 

assessing program effectiveness at other points in the assignment variable distribution, the local impact 

estimate may have somewhat limited value. 

The basic RD design has evolved into multiple design variants to address the complexity of 

evaluation contexts in the field of education. One common variation is the utilization of multiple cutoffs in 

RD design. The multiple-cutoff regression discontinuity (MCRD) design arises from variations in the cutoffs 

used to assign individuals or units to conditions [9]–[12]. For example, school districts may use different 

reading assessment score cutoffs as the eligibility criteria for inviting students to summer school, or 

universities may use different income eligibility thresholds for determining financial aid recipients. 

To date, the most common analytic method for the MCRD design is estimating an average RD 

treatment effect by pooling treatment estimates across cutoffs (i.e., the centering-and-polling approach) [9], 

[10]. The pooled RD estimate provides a summary of the average treatment effect across cutoffs. However, 

the use of the pooling method may ignore heterogeneity in the treatment effect estimates at different cutoff 

locations [9]. When treatment effects vary across cutoffs, simply averaging these effects can obscure 

evidence that the intervention was more or less effective for participants at different cut points. 

As a result, the purpose of this paper is to demonstrate modeling approaches that allow for 

simultaneous estimation of the average MCRD treatment effect and the potential heterogeneity in effects 

across intervention sites. Using data from a kindergarten mathematics intervention targeting low achieving 

students at-risk for developing a learning disability, we illustrate the application of MCRD using parametric 

and nonparametric modeling [3], [13] and estimate and model intervention effect heterogeneity across 

cutoffs. The current demonstration utilizes small within-cutoff unit samples, which mirror real-world 

evaluation contexts well [14]. However, small samples reduce the statistical power of the RD estimates at 

each local cutoff [7]. Therefore, while we use both parametric and nonparametric methods to demonstrate the 

MCRD design and analysis, we only implement the parametric method to explore heterogeneity in impacts 

across treatment sites as the nonparametric method does not support the more complex model required for 

such analysis. The proposed method offers a practical solution for evaluating educational programs that use 

different cutoffs across multiple intervention units or sites, especially in contexts with small sample sizes, 

and provides a valuable contribution to research on evaluation methods in education. 

 

 

2. METHOD 

2.1.  Data source 

Mathematics intervention data were collected from 2012 to 2015 in conjunction with a university–

school district collaboration designed to evaluate the impact of a small-group, tier 2 [15] kindergarten 

mathematics intervention, ROOTS. In the first two years of the project, study participants attended 

kindergarten in one of four school districts in Oregon, United States: one school district located in the 

Portland metropolitan area and three located in suburban and rural areas of western Oregon (51 classrooms 

from 13 schools in total). In years two and three, two school districts from the metropolitan area of Boston, 

Massachusetts, United States, also participated (55 classrooms from 9 schools in total). 

 

2.2.  ROOTS intervention 

ROOTS is a 50-lesson, tier 2 kindergarten mathematics intervention targeting students with or  

at-risk for math learning disabilities. Direct math instruction was delivered to students in small groups 

(maximum of five students) across 106 classrooms. Each session lasted 20 minutes and took place five days a 

week over a 10-week period. ROOTS uses evidence-based practices to enhance number sense and  

whole-number concepts, covering counting and cardinality, number operations, and base ten/place value. The 

intervention incorporates four validated, explicit, and systematic instructional practices: teacher modeling, 

deliberate practice, visual representations of mathematics, and academic feedback. Additionally, ROOTS 

aims to promote student engagement by providing structured opportunities for student responses. 
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2.3.  Measures 

2.3.1. Assessing student proficiency in early number sense (ASPENS) 

Assessing student proficiency in early number sense (ASPENS) was one of two screening measures 

that comprised the assignment variable used to identify students for inclusion in the ROOTS intervention. 

ASPENS was designed to screen and monitor the progress of students who are at risk for mathematics 

difficulty in Grades K through 1 [16]. The kindergarten ASPENS assessment comprises three curriculum-

based measures: number identification (112 items), magnitude comparison (56 items), and missing numbers 

(42 items), each individually administered for one minute. Children name numbers quickly, identify greater 

numbers, and determine missing numbers from strings. Each subtest scores correct or incorrect responses, 

with a composite score derived from weighted subtest scores based on standard deviation (SD) of the raw 

scores [16]. For the current data, the pretest ASPENS composite ranged from 0 to 253.9 (M=57.01, 

SD=47.68), with acceptable test–retest reliabilities (r=.74-.85). 

 

2.3.2. Number sense brief (NSB) 

The number sense brief (NSB), the second screening measure used to construct the assignment 

variable [17], identifies students at risk for later difficulties in advanced mathematics concepts. Students’ 

numerical competencies, including counting knowledge, number recognition, comparisons, non-verbal 

calculation, and story problems are assessed. Administered individually and untimed, it comprises 33 

possible items scored as correct or incorrect, yielding a total score range of 0 to 33. Test–retest reliabilities 

ranged from .78 to .86 [18]. Predictive validity, assessed by the correlation between NSB scores in Grades K 

through 1 and Grade 3 Woodcock–Johnson Achievement Test scores, ranged from .62 to .64 [18]. 

 

2.3.3. Stanford early school achievement test 2 mathematics (SESAT 2) 

The Stanford early school achievement test 2 (SESAT 2) mathematics is the kindergarten version of 

the Stanford achievement test 10th edition series (SAT-10) [19]. The SESAT 2 served as the posttest measure 

in the current study. The SESAT 2 measures early mathematical skills, including number recognition, 

counting, and basic operations such as simple addition and subtraction. The internal consistency of SESAT 2 

mathematics was reported as .88 in one study [20]. 

 

2.4.  Original research design: RCT 

Students were first considered eligible for the ROOTS intervention if they scored 20 or less on the 

NSB and had a composite ASPENS score that placed them in the strategic or intensive range. The ASPENS 

and NSB scores of ROOTS-eligible students were then separately converted into standard scores, and the two 

standard scores were summed to compute an overall composite score. The composite standard scores of 

ROOTS-eligible students were rank-ordered within each classroom, and the lowest scoring 10 students were 

then randomly assigned to one of two conditions: a ROOTS group [21] or a no-treatment business-as-usual 

(BAU) control condition (i.e., random assignment at student-level within each classroom). 

 

2.5.  Current research design: MCRD 

Rank ordering of the composite standard scores in each classroom to identify the 10 lowest-

performing students resulted in 106 unique cutoff scores (one from each classroom), enabling the creation of 

the current synthetic MCRD design [8]. Specifically, from the RCT dataset, a single cutoff based on the 

assignment variable continuum and the treatment assignment rule were determined, dividing the observations 

into either the treatment or control condition. Then, an RD treatment (RD-T) group was created by excluding 

all control group observations in the treated side (e.g., below the cutoff), and an RD control group was 

created by excluding all treated observations in the control side (e.g., above the cutoff). Following this 

approach, the MCRD data were constructed from the RCT dataset for each classroom. Specifically, we 

created an RD treatment (RD-T) group by excluding all control group observations below the cutoff in each 

classroom while the RD control (RD-C) group in each classroom comprised students whose assignment 

variable scores fell above the classroom cutoff. In total, 106 unique cutoff scores (one for each classroom) 

were identified, ranging from -2.17 to 0.24 (M=-.75, SD=.42). The majority of the classroom cutoff values 

were below 0, indicating that the ROOTS classrooms were typically below the mean value on the composite 

screening measure. The RD-T group (n=640) and the RD-C group (n=1,260) consisted of similar proportions 

of female and ethnic minority students. The RD-T group included more English language learners and more 

students receiving special education services than the RD-C group. As expected given the use of a  

cutoff-based treatment assignment rule, both assignment variable and posttest scores were lower in the RD-T 

group than in the RD-C group. Table 1 presents counts and demographic information for the two RD groups 

identified in this study (N=1,900). 
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Table 1. Student characteristics and mean and SD of assignment scores by treatment assignment condition in 

the MCRD design 
Variables RD-T (n=640) RD-C (n=1,256) 

Female n (%) 334 (52.2) 627 (49.92) 
Ethnic minority n (%) 70 (11.0) 153 (12.2) 

English language learner n (%) 124 (19.4) 127 (10.1) 

Student with disabilities n (%)  47 (7.3) 37 (2.95) 
Age in years M (SD) 5.27 (0.44) 5.41 (0.49) 

ASPENS composite scores M (SD) 21.87 (17.50) 74.79 (37.37) 

NSB total raw scores M (SD)  12.22 (3.75) 19.88 (4.80) 
Composite standard scores* M (SD) -1.52 (0.73) 1.27 (1.40) 

Spring SESAT 2 mathematics scores M (SD) 460.22 (35.43) 494.38 (37.87) 

Note. Total MCRD sample across on conditions, N=1,900. *Composite standard 
scores=composite standard scores created from combining standard ASPENSE and NSB scores 

 

 

2.6.  Analytic procedures 

Prior to conducting the MCRD analyses, the assignment variable for each classroom was centered at 

the classroom cutoff, so that all classrooms had a zero-cutoff value. Observations from all classrooms were 

then merged into a single dataset, resulting in a single centered zero-cutoff (C) across classrooms. This pooled 

dataset was used for all subsequent MCRD analyses. All analyses for this study were implemented in R [22]. 

 

2.6.1. Model assumptions 

To examine the internal validity of the pooled RD estimate, the primary RD model assumptions for 

the MCRD design were tested at the centered cutoff (C) [6], [9], [23]. First, we checked whether the 

distribution of key student characteristics (covariates), such as gender, age, English-language learner status, 

and special education status was balanced at the cutoff. The examination was conducted by regressing the 

baseline covariates on the assignment variable and the treatment indicator within an optimal bandwidth that 

minimizes mean-square error (MSE). Second, to determine if there was manipulation of the assignment 

scores at the cutoff, we assessed the discontinuity in the probability density function using the McCrary  

test [24] with the rddensity version 2.3 package in R [25]. 

 

2.6.2. Pooled parametric multiple-cutoff regression discontinuity model 

In the MCRD design, the pooled treatment effect represents the average treatment effect across 

different cut points in the assignment variable continuum [9]. Using the combined (pooled) dataset, we 

conducted a standard RD analysis at the centered cutoff (C) to estimate this effect. We used a 2-level linear 

mixed model (i.e., multilevel modeling) [26] with a random intercept and fixed slopes to estimate the 

treatment effect across classrooms. The multilevel model was used to address the potential dependencies that 

arise from students (Level 1) nested within classrooms (Level 2). Posttest student SESAT 2 Mathematics 

scores (Level 1) were regressed on linear, quadratic, and cubic terms of the centered assignment variable, the 

treatment indicator, and interaction terms between the treatment indicator and centered assignment variable. 

No predictors were included at the classroom level (Level 2). Predictors not statistically associated with the 

outcome were removed iteratively, starting with higher-order terms, until the most parsimonious and  

best-fitting model was identified. We used F-statistics and the Akaike information criterion (AIC) value to 

determine if a more complex model yielded statistically significant improvements. The general form of the 

parametric pooled MCRD model is specified in (1): 

 

𝑌𝑖𝑗 = γ00 + γ10(𝑥𝑖𝑗 − 𝐶𝑗) + γ20(𝑥𝑖𝑗 − 𝐶𝑗)
2

+ γ30(𝑥𝑖𝑗 − 𝐶𝑗)
3

+ γ40𝑍𝑖𝑗 + γ50(𝑥𝑖𝑗 − 𝐶𝑗)𝑍𝑖𝑗 +

γ60(𝑥𝑖𝑗 − 𝐶𝑗)
2

𝑍𝑖𝑗 + γ70(𝑥𝑖𝑗 − 𝐶𝑗)
3

𝑍𝑖𝑗 + u0𝑗 + r𝑖𝑗  (1) 

 

Where, Yij is the SESAT 2 mathematics score of student i in classroom j; xij is the assignment score for 

student i in classroom j; c𝑗 is the cutoff for classroom j; Zij is the dichotomous ROOTS intervention indicator 

for student i in classroom j (0=control, 1=treatment); (xij-c𝑗)Zij is the interaction between assignment score 

and the ROOTS intervention indicator for student i in classroom j; 𝛾00 is the mean SESAT mathematics score 

for the control group; 𝛾10 is the slope relating the assignment score to the posttest SESAT mathematics score; 

𝛾20 is the slope relating the quadratic term of the assignment score to the posttest SESAT mathematics score; 

𝛾30 is the slope relating the cubic term of the assignment score to the posttest SESAT mathematics score;  

𝛾40 is the difference in the linear slope between the two conditions (0=control, 1=treatment); 𝛾50 is the slope 

for the interaction between the assignment score and the ROOTS intervention indicator; 𝛾60 is the slope for 

the interaction between the quadratic term of the assignment score and the ROOTS intervention indicator;  
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𝛾70 is the slope for the interaction between the cubic term of the assignment score and the ROOTS 

intervention indicator; and rij is the student-level residual term. At the classroom level (Level 2), the intercept 

(𝑢0j) was allowed to vary between classrooms, while all slopes were fixed to be constant across classrooms.  

 

2.6.3.  Pooled nonparametric multiple-cutoff regression discontinuity model 

A nonparametric analysis was conducted using local linear regression (LLR) [13] to supplement the 

parametric results. First, we identified an MSE-optimal bandwidth (h) around the cutoff using the  

Imbens-Kalyanaraman (IK) procedure [27]. Then, we applied a linear regression with triangular kernel 

weights within the optimal bandwidth (h). The nonparametric pooled RD model is defined in (2): 

 

Yij = 𝛽0 +𝛽1(xij - cj)+ 𝛽2Zij  

with triangle kernel weights 𝑲(𝒙) = (𝟏 − |𝒙|)𝟏{|𝒙| ≤ 𝟏} (2) 

 

Where, xij is the assignment score for student i in classroom j; cj is the cutoff score for classroom j; and Zij is 

the ROOTS intervention indicator for student i in classroom j (0=control, 1=treatment). The term 𝛽2 

represents the magnitude of the treatment effect at the centered cutoff C. To check the sensitivity of the 

results to the choice of bandwidth, we repeated the analysis using bandwidths half and twice the optimal size 

for comparison. Standard errors for the nonparametric estimates were calculated using bootstrapping 

techniques, with 1,000 repetitions. 

 

2.6.4.  Multiple-cutoff regression discontinuity heterogeneity model 

A 2-level linear mixed model was used to examine potential heterogeneity in the effect of the 

ROOTS intervention across classrooms. Following the best-fitting parametric pooled model, the base 

conditional MCRD model was defined as in (3). 
 

Yij=𝛾00+𝛾10(xij- cj)+𝛾20(xij-cj)2 +𝛾30 Zij+ 𝛾31cj Zij+ 𝑢0j+𝑢3j+rij (3) 
 

Where, Yij is the posttest SESAT mathematics score for student i in classroom j; xij is the assignment score for 

student i in classroom j; cj is the cutoff score for classroom j; Zij is the ROOTS intervention indicator for 

student i in classroom j (0=control, 1=treatment); 𝛾00 is the classroom mean SESAT mathematics score for 

the control group; 𝛾10 is the slope relating the assignment score to the posttest SESAT mathematics score; 𝛾20 

is the slope relating the quadratic term of the assignment score to the posttest SESAT mathematics score; 𝛾30 

represents the difference in the posttest score between the treatment and control groups; 𝑢0j is the random 

intercept term; and rij is the student-level residual term. The treatment effect was modeled to vary across 

classrooms (𝑢3j) to examine the potential heterogeity of the estimated treatment effect across classrooms. We 

also included the classroom cutoff value (cj) as a classroom-level predictor to explore whether the classroom 

assignment cutoff value was associated with amplifying or attenuating the treatment effect (𝛾31).  
 

 

3. RESULTS AND DISCUSSION 

3.1.  Results 

3.1.1. Assumption tests 

Table 2 presents the covariate balance statistics. At the centered cutoff (C), there was no statistically 

significant discontinuity in any of the tested covariates. The McCrary test also revealed statistically non-

significant results, suggesting there was no systematic manipulation of the assignment scores around the cutoff. 

 

 

Table 2. Covariate balance statistics 
Covariates ∆ Difference SE p Variance ratio 

Female -.04 .04 .31 1.01 

Student age -.05 .03 .14 .92 

Limited English proficiency .03 .03 .39 1.10 
Special education  .01 .02 .67 1.14 

Note. ∆ difference=weighted mean difference in the covariate distribution at the centered cutoff; variance ratio=mean ratio 

of the variance of a demographic variable in the treatment group to the variance of the variable in the comparison group 

 

 

3.1.2. Multiple-cutoff regression discontinuity parametric model 

Table 3 reports the estimates for the parametric MCRD models. The intraclass correlation 

coefficient (ICC) indicated that 40% of the variation in student posttest SESAT mathematics scores was 

attributable to classroom-to-classroom differences. The best-fitting model (Model 1) included a linear and 
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quadratic term for the assignment variable. The model results indicated a positive relationship between 

assignment scores and posttest SESAT mathematics scores (γ10=15.29, SE=.89), meaning that an increase in 

assignment scores predicted a corresponding increase in the posttest SESAT mathematics scores. However, 

as assignment scores continued to increase, the rate of improvement in posttest SESAT mathematics scores 

decelerated (γ20=-.52, SE=.17). The RD treatment effect estimate was statistically significant (γ30=5.30, 

SE=2.32), demonstrating that across the range of cutoff values, students assigned to the treatment condition 

outperformed those assigned to the control condition on average. Although the addition of a random effect 

term for the treatment status indicator (u3j) did not statistically improve the model (Model 2), the term was 

retained in order to explore whether treatment effects varied by the cutscore that was used to assign students 

to the treatment or control condition across classroom units (Model 3). 

 

 

Table 3. Multilevel SESAT mathematics outcome models (N=1,900) 

Effect 
Model 1 Model 2 Model 3 

Estimate SE Estimate SE Estimate SE 

Fixed effect       

Intercept, γ00 468.27*** 2.49 468.17*** 2.49 478.14*** 4.24 

Inter-student predictors   
   

 
Assignment score, γ10 15.29*** .89 15.36*** .90 15.92*** .91 

Assignment score squared, γ20 -.52** .17 -.53** .17 -.64*** .17 

Treatment, γ30 5.30* 2.32 5.48* 2.37 12.65*** 3.60 
Inter-classroom predictors       

Cut-point, γ01     15.30** 5.03 

Cut-point, γ31     8.88* 3.41 
Random effect VC SD VC SD VC SD 

Student (level 1), rij 697.40 21.45 692.05 26.23 692.45 26.31 
Mean SESAT score, u0j 460.10 26.41 459.43 21.60 419.64 20.49 

Treatment effect, u3j   23.62 5.35 13.29 3.65 

Note: SE=Standard error, VC=Variance components, SD=Standard deviation 

*p<.05, **p<.01, ***p<.001 

 

 

3.1.3. Nonparametric model 

Local linear regression was implemented within the MSE-optimal bandwidth (two points) around 

the cutoff, as determined by the IK procedure. By restricting the analysis to observations within this 

bandwidth, the local linear analysis used 39.4% of the student observations. Table 4 reveals that the treatment 

effect within the optimal bandwidth was statistically significant (β2=6.63). This result indicated that, on 

average, students in the treatment condition had higher posttest SESAT mathematics scores than those in the 

control condition across all cutoff values. The results of the sensitivity analysis also revealed that using the 

half or double-sized bandwidth led to pooled RD estimates of 8.81 (p<.05) and 4.17 points (p>.05), 

respectively, suggesting that the nonparametric impact estimate was sensitive to the bandwidth size. Figure 1 

displays the nonparametric local linear regression plot of the assignment and outcome variable relationship, 

whereby the 6-point discontinuity at the pooled cut point can be seen. 

 

 

Table 4. Nonparametric pooled RD estimates of SESAT mathematics outcome 

Effect 
Half bandwidth Optimal bandwidth Double bandwidth 

Estimate t Estimate t Estimate t 

Intercept, β0 465.21 (2.75) 169.08*** 466.22 (1.96) 237.67*** 467.55 (1.67) 280.40*** 

Assignment score, β1 20.43 (5.26) 3.89*** 15.72 (2.03) 7.74*** 13.63 (1.05) 13.01*** 

Treatment, β2 8.81 (5.49) 2.30* 6.63 (3.86) 2.24* 4.17 (2.89) 1.63 

Note. Nonparametric pooled RD estimates are shown with standard errors in parenthesis. Nonparametric estimates have 
bootstrapped standard errors (repetition=1,000) 
*p<.05, **p<.01, ***p<.001 

 

 

3.1.4. Multiple-cutoff regression discontinuity heterogeneity model 

When the classroom cutoff score was added as a predictor of the variance in treatment effects (see 

Model 3 and Table 3) in the parametric RD model, results indicated a positive interaction between the cutoff 

score and the treatment effect parameter (γ31=8.88, SE=3.41). The moderated relationship suggests that 

higher cutoff scores were associated with greater treatment effects. Notably, the classroom cutpoint was also 

associated with overall classroom mean performance (γ01=15.30, SE=5.03), indicating that classrooms with 

higher cutoff values had statistically higher mean posttest scores relative to those with lower cutoff scores. 
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Figure 2 shows that the local RD treatment effect estimates varied widely depending on the cutoff value used 

to screen students into treatment conditions, with an approximate range between -57 and +68 points. 

Classrooms with higher cutoff values generally exhibited larger treatment effects, although the classroom 

with the lowest cutoff score also displayed a substantial positive effect. It is important to note, however, that 

the confidence interval for each RD estimate was large due to the small sample size, suggesting that caution 

should be used when interpreting the individual local RD estimates. 

 

 

 
 

Figure 1. Nonparametric plot of the assignment and outcome variable relationship 
 

 

 
 

Figure 2. Local RD treatment effect estimates at various classroom cut points with 95% confidence intervals 
 

 

3.2.  Discussion 

The RD design is often considered as a practical alternative to the RCT in field-based settings as it 

can provide an unbiased treatment effect estimate when model assumptions are met and the relationship 

between the assignment and outcome variables is correctly specified. This paper provided an overview of the 
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MCRD design, an extension of basic RD design used when multiple cutoffs are used program or intervention 

assignment across different units or sites. Previous analytic approaches for MCRD designs primarily focused 

on estimating average treatment effects across cutoffs, potentially overlooking site- or unit-specific 

differences in treatment effects [9]. Conversely, this paper demonstrated a modeling approach that 

simultaneously estimates both the overall average treatment effect and treatment effect heterogeneity across 

different intervention units. Findings indicated that students who received the ROOTS intervention had 

higher mathematics scores on average at post-intervention compared to those who did not. Additionally, the 

size of the intervention effects varied across classrooms, with greater effects generally observed in 

classrooms that had higher cutoff scores to screen students for the intervention. 

 

3.2.1. Multiple-cutoff regression discontinuity estimation and statistical validity 

The results revealed that the pooled treatment effect estimate varied depending on the estimation 

method (parametric or nonparametric). The magnitude of the RD estimate was larger when using the 

nonparametric model (6.48, effect size g=.19) [28] compared to the parametric model (5.13, effect size 

g=.14). Although the effect sizes across the methods were relatively similar, the observed differences in the 

raw treatment effect estimates can be attributed to the methods used in the estimation of each model. The 

parametric method uses all available observations in the dataset to fit a model, whereas the nonparametric 

method relies on a subsample available within the optimal bandwidth. In the present demonstration, we did 

not evaluate the internal validity of the different treatment effect estimates. However, we hypothesize that the 

nonparametric method is likely to produce a more robust causal estimate than the parametric method, given 

that it uses only observations near the cutoff. An examination of the standard errors associated with each 

treatment effect estimate revealed that the nonparametric method produced higher standard errors than the 

parametric method. This finding is not surprising, given that the nonparametric method uses a smaller 

number of observations within a small bandwidth to estimate the relationship between the assignment 

variable and the outcome. 

The choice between parametric and nonparametric estimation methods in pooled MCRD analyses 

will be often context-specific. While the nonparametric model may yield a more robust RD estimate, it 

generally has lower statistical power compared to the parametric model. Therefore, the nonparametric 

method is best suited for multi-site program evaluations with relatively large within-unit samples. A large 

within-site sample will typically be required when the unit-specific treatment effects and RD treatment effect 

heterogeneity are of primary interest. Additionally, since the nonparametric approaches such as local linear 

regression utilize the samples within the optimal bandwidth around the cutoff, it is critical to have a sufficient 

number of observations near the cutoff (i.e., effective sample) to use this method effectively. If a large 

within-unit sample or effective sample is not available-a common challenge in real-world evaluations-

parametric modeling would be a viable alternative, given that it produces an impact estimate with a relatively 

higher statistical power. We recommend that researchers employ both MCRD estimation methods, along 

with graphical analysis, to examine the sensitivity of treatment impact and precision estimates provided by 

each method. 

 

3.2.2. Intervention impact heterogeneity in multiple-cutoff regression discontinuity designs 

Results from MCRD model indicated that the ROOTS intervention worked differently depending on 

the cutoff value chosen to screen students into the treatment condition in each classroom. Specifically, higher 

assignment score cutoff values were associated with greater intervention effects on average. These findings 

suggest that the MCRD can be an informative program evaluation design when treatment assignment cutoffs 

vary by intervention unit or site. By identifying the pooled treatment effect over a range of the assignment 

variable continuum and examining whether an intervention effect varies at different cut-points, researchers 

and educators can gain a more comprehensive understanding of program performance and the factors 

influencing differential outcomes. 

The ability to derive a pooled impact estimate across a wider range of the assignment variable 

continuum notably contrasts with the basic RD design, where causal inference is restricted to a narrow region 

around a single cutoff score. For educational researchers and program evaluators, the MCRD design may 

thus be used to probe whether a program is effective or differentially effective across a range of 

diagnostically important assignment score values. In cases where heterogeneity in the local treatment effects 

is not observed, a pooled RD estimate serves to provide an accurate summary of the average treatment effect 

across all cutoffs included in the design. The researcher can then infer the treatment had similar impact across 

a specified age range or an income, reading score, or preprogram performance intervals, for example. 

However, if the researcher identifies that the treatment effect varies across different points along the 

assignment variable continuum, then it becomes possible to investigate whether site characteristics (e.g., unit 

cutoff value, class size, fidelity of implementation) moderate the size of the treatment impact on the 
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outcomes of interest. The researcher may then be able to report that program effects varied with respect to 

more or less malleable program characteristics such as the level of adherence to the program model, the 

severity of need in the community, or the length of program operations. 

The acquisition of more robust insight into the RD treatment effect, including possible 

heterogeneity, may enable educational program developers and administrators to redesign or modify the 

delivery of an intervention to better meet the needs of diverse program participants. For example, if an early 

childhood literacy intervention is shown to have a positive impact for students at moderate risk, but not for 

those most at-risk, educators could choose to reconsider the intervention’s target population, entertain 

adopting a new program with a better aligned curriculum, or attempt to modify the program to provide a 

more intense treatment dosage to those most at-risk of negative outcomes. Similarly, in college remediation 

programs, if a math remediation course benefits students with moderate low scores but not those with the 

lowest scores, program developers and administrators may choose to reevaluate the program's target 

population or enhance the program's intensity for those with the lowest scores. 

 

3.2.3.  Limitations 

The current study has several limitations to note. First, we did not evaluate the performance of the 

MCRD estimate relative to the benchmark RCT causal estimate. That is, the findings of this study do not 

speak to whether the MCRD design produces treatment effect estimates that are comparable to an RCT 

benchmark. Therefore, future studies are needed to evaluate the validity and efficiency of MCRD methods in 

comparison to RCT estimates. Second, the dataset used in this study had a small within-group (classroom) 

sample size, thereby limiting the reliability of the estimation of local intervention effects at each cutoff. 

Third, this study considered only one predictor of treatment effect heterogeneity. Given recent research 

linking group- and classroom-level factors to math development [29], [30], future studies should investigate 

how various unit-level factors (e.g., instructional strategy, fidelity of implementation, teacher experience) 

relate to classroom differences in program outcomes. 

 

 

4. CONCLUSION 

The motivation for this study was to demonstrate a method for estimating treatment effects when 

multiple cutoffs are used across different intervention units and to model treatment effect variability within 

the RD framework for educational evaluation. While further research is needed, the current study suggests 

that MCRD designs have the potential to identify the pooled intervention effect across cutoffs and uncover 

the processes and mechanisms through which interventions are differentially effective across individuals and 

contexts. We recommend that researchers start an MCRD analysis with a traditional pooling analysis to 

estimate the average treatment effect across cutoffs. Subsequently, they can further explore potential 

heterogeneity in treatment effects at different cutoff points by examining interaction effects or conducting 

subgroup analyses based on relevant theory, the research context, and preliminary analytic results (e.g., local 

RD treatment effect estimates). 
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