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 Computer adaptive testing (CAT) is a technological advancement for 

educational assessments that requires thorough feasibility studies through 

computer simulations to ensure strong testing foundations. This 

advancement is especially germane in Africa being adopters of technology, 

and this should not be done blindly without empirical evidence. A quasi-

experimental design was adopted for this study to establish methodological 

choices for CAT ability estimation. Five thousand candidates were simulated 

with 100 items simulate through the three-parameter logistic model. The 

simulation design stipulated a fixed-length test of 30 items, while examinee 

characteristics were drawn from a normal distribution with a mean of 0 and a 

standard deviation of 1. Also, controls for the simulation were set not to 

control item exposure or to use the progressive restricted method. Data 

gathered were analyzed using descriptive statistics (mean and standard 

deviation) and inferential statistics (Two-way multivariate analysis of 

variance: MANOVA) for testing the generated hypotheses. This study 

provided empirical evidence for choosing ability estimation methods for 

CAT as part of the efforts geared towards designing accurate testing 

programs for use in higher education.  
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1. INTRODUCTION 

The origin of Computer adaptive testing (CAT) can be traced to a French psychologist Alfred Binet 

starting in the early 19th century, who was strictly interested in accurate ability measurements and the basis 

for which CAT is built [1], [2]. CAT has been widely employed in the developed world as technological 

advancement for educational assessments with over two decades of applications [3]. Being in the second 

generation of computer-based testing, the world of assessment focuses on Artificial Intelligence at the fourth 

industrial revolution [4]. A clarion call is on for the African continent still predominantly in the first 

generation of utilizing the fixed-form of computer-based assessments to make a forward march to the 

foremost generation while canvassing for a start with the adaptive forms of testing [5]. While this call for a 

jolt forward is well overdue, care must be taken to ensure that moving to the adaptive forms is well-founded 

and carefully researched. Simulations are carried out for feasibility studies to ensure that a CAT testing 

program is built on empirically proven foundations. The legitimacy of CAT further gains importance for the 

sub-Saharan African continent as late technology adopters [6], [7], with the majority of the region lagging in 

the bottom half of the networked readiness index rankings; a measure of the propensity for countries to 

exploit and benefit from the opportunities offered by information and communications technology [8]. 

https://creativecommons.org/licenses/by-sa/4.0/
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CAT is premised on item response theory (IRT), which is classified as either dichotomous or 

polytomous models based on how responses are scored [9], [10]. Extensive CAT research has been carried 

out in the military, health, and education sectors for ability measurements [2], [3], [11]–[13]. Research 

reveals that adaptive form tests have psychometric properties equal to or greater than fixed forms while 

reducing test lengths by up to 50% [13]–[15]. Furthermore, adaptive tests hold superior statistical properties 

than traditional tests [16]. Research has been done on various statistical methods for CAT ability estimation, 

being the essential aspect of CAT performance evaluation of a testing program, premised on the model fit 

and response patterns adopted [13], [17], compared the Bayesian modal (BM) estimator with Jeffreys’ prior 

distribution and the weighted likelihood (WL) estimator under the three-parameter logistic model. Ability 

estimation can be approached using maximum likelihood estimation with or without fences (MLEF or MLE) 

or the Bayesian maximum and expected posteriori (MAP and EAP) method. Previous researches [3], [18], 

[19] observed that when Bayes theorem (1763) is applied, the conditional probability of the item and person 

parameters given the data can be modeled as a combination of prior beliefs about them and a parametric 

model about what the data should look like, conditional on the item and person parameter values. 

MLE which relies heavily on the quality of the items is gauged by its parameters and is commonly 

used [1], explained that the ML estimation method does not produce finite estimates for response patterns 

with all items correct or all incorrect. This ability estimation method does not work with the specific 

dichotomous response [13], which constitutes challenges at the early stages of CAT administration with short 

test lengths. A similar school of thought indicating that maximum likelihood methods treat person abilities as 

fixed effects which results into undesirable skewness which can be circumvented using bias correction 

methods [10]. This challenge has been taken care of using MLEF, whereby lower and upper bounds of theta 

estimation are set while truncating the score estimation to be one of those bounds when the log-likelihood 

function fails to yield a peak with the dichotomous response pattern. Alternatively, Bayesian procedures 

strengthen ability estimation using prior information on the target population's distribution while reducing the 

item parameters' estimation errors with small sample sizes, especially for the discrimination parameter [18], 

[20]. CAT without adequate feasibility studies through simulation research in each stage of the development 

process runs the risk of inefficiency, rendering its advantages worthless and legally indefensible [15]. 

Research has been carried out on the performance of CAT regarding test forms [12], item selection 

procedures [5], [21] and methodological choices [9], [22] and test performance with Bayesian methods [23]. 

The performance of these ability estimation methods can be researched through simulations for CAT 

feasibility studies using computer software such as SimulCAT [24], CATSIM [25], FireStar [26] or 

SimulMCAT [27]. While these ability estimation methods are readily available using computer software, 

choices made should be empirically proven. Establishing empirical evidence is especially necessary for 

technology adopters; countries who accept, integrate, and use new technology in society; a category in which 

African researchers belong. This study established the precision of various methodological choices for ability 

estimation achieved through three research questions: i) What is the precision of ability estimation of CAT 

using fixed values, randomly chosen values at ±0.5 and mean performance values using MLEF, MAP and 

EAP with or without progressively restricted item exposure controls?; ii) What is the precision of interim 

ability estimation of CAT while limiting the range of estimation and estimates by jumps using MLEF, MAP 

and EAP with or without progressively restricted item exposure controls?; iii) What is the precision of the 

final ability estimation of CAT using MLEF, MAP and EAP with or without progressively restricted item 

exposure controls? Hence, there are three hypotheses of this research: i) There is no significant effect of 

ability estimation precision starting CAT using fixed mean performance values, randomly chosen values at 

±0.5 using MLEF, MAP and EAP with or without progressively restricted item exposure controls (H01); ii) 

There is no significant effect of interim ability estimation precision of CAT limiting the range of estimation 

and estimates by jumps using MLEF, MAP and EAP with or without progressively restricted item exposure 

controls (H02); iii) There is no significant effect of the final ability estimation precision of CAT using MLE or 

MLEF, MAP and EAP with or without progressively restricted item exposure controls (H03). 

 

 

2. RESEARCH METHOD 

2.1.  Design 

This study was exempted from the requirement to obtain informed consent by the Faculty of 

Education Research Ethics Committee of the University of Johannesburg because the data for the study were 

computer-simulated. A quasi-experimental design was adopted for this study. Using a factorial design of 

3x3x2x2, the ability estimation methods of MLEF, Bayesian MAP and EAP were contained in the first 

factorial level. The second factorial level was used to start the CAT at three levels (fixed values, randomly 

chosen values at ±0.5 and mean performance values). The third factorial level was used at the interim of CAT 

occurring at two levels (limiting the range of estimation and estimates by jumps). The fourth factorial level 

was used at the final stage of CAT occurring at two levels (using maximum likelihood and not using 
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maximum likelihood). Across all these levels, Item exposure controls had two levels of applying control and 

not applying control using the progressive restricted method across all these levels. The simulation used the 

three ability estimation methods as a treatment in the quasi-experiment with this design while varying item 

exposure as control. The experimental design is shown in Table 1. 
 

 

Table 1. The experimental design 
Groups Treatment Moderating variable Post-test 

Experimental 
Group I (EG-I) 

X1 Start: fixed values, randomly chosen values at ±0.5 and using mean performance values 
Interim: limiting the range of estimation and estimates by jumps 

Final: Maximum Likelihood/not with Maximum Likelihood 

O1 

Experimental 
Group II (EG-II) 

X2 Start: fixed values, randomly chosen values at ±0.5 and using mean performance values 
Interim: limiting the range of estimation and estimates by jumps 

Final: Maximum Likelihood/not with Maximum Likelihood 

O1 

Experimental 
Group III (EG-III) 

X3 Start: fixed values, randomly chosen values at ±0.5 and using mean performance values 
Interim: limiting the range of estimation and estimates by jumps 

Final: Maximum Likelihood/not with Maximum Likelihood 

O1 

Control Item exposure (With or without applying the progressively restricted) O1 

X1=Treatment for EG-I: MLEF; X2=Treatment for EG-II: MAP; X3=Treatment for EG-III: EAP; Control=Item exposure; O1=Simulation 

 

 

2.2.  Simulation protocol 

The Monte Carlo simulation method was used to generate data for this study using SimulCAT. 

SimulCAT is deemed appropriate for being a specialized, Monte-Carlo based simulation software [24]. The 

a-Stratification with b-Blocking item selection criteria method was used [5] with a fixed-length test of 30 

items [28], and the choice of the progressive restricted item exposure method [20] was used for all 

simulations with 500 simulees. An item pool of 100 dichotomously scored items was created using  

3-parameter logistic (3PL) item response with item discrimination (a), the difficulty (b), and the guessing (c) 

drawn from a normal distribution with a mean of 0 and standard deviation of 1. The descriptive statistics for 

the item parameter estimate for a pool of 100 items used for the simulated CAT are shown in Table 2. 

As shown in Table 2, the mean of a, b, and c parameters of 0.44, -2.34 and 0.00, respectively, for the 

fixed-length simulated computer-adaptive test show that the generated data fell within the specified ranges to 

guarantee adequate discrimination between the low and high-ability students, moderate difficulty and pseudo 

guessing required for maximal functioning of CAT [5]. The researchers simulated the ability estimation for 

CAT using three Maximum Likelihood Estimation methods with fences, Bayesian maximum a posteriori and 

Bayes expected posteriori. The simulation design stipulated a fixed-length test of 30 items specified for 500 

simulates “taking” the adaptive test at time slot 1. Also, controls for the simulation were set not to control 

item exposure or to use the progressive restricted method.  

Data gathered were analyzed in two stages. In the first stage, descriptive statistics (mean and 

standard deviation) and inferential statistics (Two-way multivariate analysis of variance: MANOVA) were 

used to test the generated hypotheses to establish the precision of methodological choices for CAT ability 

estimation. MANOVA was deemed appropriate for this study with three dependent variables (MLEF, MAP, 

and EAP), having two independents (simulations across fixed, random and data initial score values and item 

exposure control/no control) [29], [30]. 
 

 

Table 2. Descriptive statistics for item pool 
Parameters Mean Std. Deviation 

a .4428 1.26245 
b -2.3383 2.71670 

c .0000 .00000 

 

 

3. RESULTS 

3.1.  Hypothesis 1 

There is no significant effect of ability estimation precision starting CAT using fixed values, 

randomly chosen values at ±0.5 and using mean performance values using MLEF, MAP, and EAP with no 

and progressively restricted item exposure controls. To test Hypothesis 1, the ability estimation precision 

using MLEF, MAP, and EAP while controlling for item exposure (varying between the use of no control and 

progressive restrictions) with fixed, random and data initial score estimation methods premised on the 

conditional BIAS (CBIAS), conditional maximum mean absolute error (CMAE) and conditional root mean 

square error (CRMSE) SimulCAT outputs were analyzed using two-way MANOVA at 0.05 level of 

significance. The multivariate tests reported using Wilks' Lambda are displayed, as shown in Table 3. 
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Table 3 shows that the calculated values of F (6, CBIAS=.381; CMAE=.246; CRMSE=.119) tested 

at 0.05 alpha level. The first null hypothesis is accepted since all the p-values are greater 0.05 alpha level 

(.89; .96; .99 are >.05). This result connotes that premised on the conditional statistics, the initial score 

estimation methods (fixed, random and data) with or without applying progressively restricted item exposure 

controls for CAT have no significant effect on the ability estimation precision of starting CAT by using 

MLEF, MAP or EAP. 
 

 

Table 3. Multivariate tests on initial ability estimation precision using MLEF, MAP and EAP 
 Effect Value F df Error df Sig. 

CBIAS Intercept .908 2.355b 3.000 70.000 .079 

 SIM .895 1.337b 6.000 140.000 .245 
 Exposure .987 .302b 3.000 70.000 .824 

 SIM * Exposure .968 .381b 6.000 140.000 .890 

CMAE Intercept .050 443.866b 3.000 70.000 .000 
 SIM .952 .579b 6.000 140.000 .746 

 Exposure .973 .636b 3.000 70.000 .594 

 SIM * Exposure .979 .246b 6.000 140.000 .960 
CRMSE Intercept .043 517.991b 3.000 70.000 .000 

 SIM .965 .418b 6.000 140.000 .866 

 Exposure .967 .801b 3.000 70.000 .498 
 SIM * Exposure .990 .119b 6.000 140.000 .994 

a. Design: Intercept + SIM + Exposure + SIM * Exposure; b. Exact statistic 

 

 

3.2.  Hypothesis 2 

There is no significant effect of interim ability estimation precision of CAT while limiting the range 

of estimation and estimates by jumps using MLEF, MAP and EAP with or without progressively restricted 

item exposure controls. To test Hypothesis 2, ability estimation precision using MLEF, MAP and EAP while 

controlling for item exposure (varying between the use of no control and progressive restrictions) while 

limiting the range of estimation and estimates by jumps at the interim of CAT were analyzed using two-way 

MANOVA at 0.05 level of significance. The multivariate tests are reported using Wilks' Lambda, as shown 

in Table 4.  
 

 

Tables 4. Multivariate tests on interim ability estimation precision using MLEF, MAP and EAP 
Method Effect Value F df Error df Sig. 

CBIAS Intercept .892 5.720b 3.000 142.000 .001 

 SIM .959 1.005b 6.000 284.000 .422 

 Method .995 .226b 3.000 142.000 .878 
 Control .992 .383b 3.000 142.000 .765 

 SIM * Methods .970 .718b 6.000 284.000 .635 

 SIM * Control .956 1.068b 6.000 284.000 .382 
 Methods * Control .995 .238b 3.000 142.000 .869 

 SIM * Methods * Control .982 .442b 6.000 284.000 .850 

CMAE Intercept .063 706.642b 3.000 142.000 .000 

 SIM .989 .262b 6.000 284.000 .954 

 Method .994 .277b 3.000 142.000 .842 
 Control .994 .270b 3.000 142.000 .847 

 SIM * Methods .974 .639b 6.000 284.000 .699 

 SIM * Control .976 .567b 6.000 284.000 .757 
 Methods * Control .982 .863b 3.000 142.000 .462 

 SIM * Methods * Control .987 .307b 6.000 284.000 .933 

CRMSE Intercept .050 901.566b 3.000 142.000 .000 
 SIM .988 .288b 6.000 284.000 .942 

 Method .994 .298b 3.000 142.000 .827 

 Control .994 .274b 3.000 142.000 .844 
 SIM * Methods .973 .657b 6.000 284.000 .684 

 SIM * Control .977 .566b 6.000 284.000 .758 

 Methods * Control .981 .932b 3.000 142.000 .427 
 SIM * Methods * Control .987 .321b 6.000 284.000 .926 

a. Design: Intercept + SIM + METHODS + CONTROL + SIM * METHODS + SIM * CONTROL + 

METHODS * CONTROL + SIM * METHODS * CONTROL 

b. Exact statistic 
 

 

Table 4 shows calculated value of F(6, CBIAS: .442; CMAE: .307; CRMSE: .321) tested at 0.05 

alpha level. The null hypothesis one is accepted since the P-values are greater 0.05 alpha level (.85; .93; .93 

all >.05). This result connotes that premised on the conditional statistics, the initial score estimation methods 
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(fixed, random and data) while applying no or using Progressively restricted item exposure controls for CAT 

has no significant effect on ability estimation precision at the interim of CAT while applying jumps and 

ranges using MLEF, MAP and EAP methods. 

 

3.3.  Hypothesis 3 

There is no significant effect of the final ability estimation precision of CAT using MLE or MLEF, 

MAP and EAP with or without progressively restricted item exposure controls. To test Hypothesis 3, ability 

estimation precision using MLEF, MAP and EAP while controlling for item exposure (varying between the 

use of no control and progressive restrictions) using maximum likelihood or not using maximum likelihood 

estimation at the final stage of CAT were analyzed using two-way MANOVA at 0.05 level of significance. 

The multivariate tests are reported using Wilks' Lambda, as shown in Table 5. 

 

 

Table 5. Multivariate tests on final ability estimation precision using MLEF, MAP, and EAP 
 Effect Value F df Error df Sig. 

CBIAS Intercept .872 13.984 3.000 286.000 .000 
 Start (SIM) .982 .885 6.000 572.000 .505 

 Interim (Methods) .992 .812 3.000 286.000 .488 

 Final .983 1.659 3.000 286.000 .176 
 Control .990 .964 3.000 286.000 .410 

 Start * Interim .986 .692 6.000 572.000 .656 
 Start * Final .979 1.002 6.000 572.000 .423 

 Start * Control .987 .639 6.000 572.000 .699 

 Interim * Final .987 .639 6.000 572.000 .699 
 Interim * Control .998 .165 3.000 286.000 .920 

 Final * Control .996 .405 3.000 286.000 .749 

 Start * Interim * Final .997 .160 6.000 572.000 .987 
 Start * Interim * Control .990 .491 6.000 572.000 .815 

 Start * Final * Control .996 .209 6.000 572.000 .974 

 Interim * Final * Control .983 1.631 3.000 286.000 .182 

 Start * Interim * Final* Control .994 .279 6.000 572.000 .947 

CMAE Intercept .061 1473.679 3.000 286.000 .000 

 Start (SIM) .990 .480 6.000 572.000 .823 
 Interim (Methods) .994 .549 3.000 286.000 .649 

 Final 1.000 .019 3.000 286.000 .996 

 Control .977 2.210 3.000 286.000 .087 
 Start * Interim .988 .590 6.000 572.000 .739 

 Start * Final .986 .652 6.000 572.000 .689 

 Start * Control .985 .716 6.000 572.000 .637 
 Interim * Final .998 .188 3.000 286.000 .904 

 Interim * Control .991 .863 3.000 286.000 .461 

 Final * Control .999 .050 3.000 286.000 .985 
 Start * Interim * Final .975 1.196 6.000 572.000 .307 

 Start * Interim * Control .995 .222 6.000 572.000 .970 

 Start * Final * Control .997 .123 6.000 572.000 .994 
 Interim * Final * Control .991 .822 3.000 286.000 .483 

 Start * Interim * Final* Control .966 1.687 6.000 572.000 .122 

CRM Intercept .052 1736.550 3.000 286.000 .000 
 Start (SIM) .985 .703 6.000 572.000 .647 

 Interim (Methods) .995 .490 3.000 286.000 .689 

 Final .999 .124 3.000 286.000 .946 
 Control .973 2.641 3.000 286.000 .050 

 Start * Interim .984 .790 6.000 572.000 .578 

 Start * Final .984 .763 6.000 572.000 .599 
 Start * Control .479 6.000 572.000 .824 .479 

 Interim * Final .999 .106 3.000 286.000 .957 

 Interim * Control .993 .635 3.000 286.000 .593 
 Final * Control 1.000 .039 3.000 286.000 .990 

 Start * Interim * Final .973 1.291 6.000 572.000 .259 

 Start * Interim * Control .995 .244 6.000 572.000 .962 

 Start * Final * Control .997 .163 6.000 572.000 .986 
 Interim * Final * Control .991 .832 3.000 286.000 .477 

 Start * Interim * Final* Control .979 1.034 6.000 572.000 .402 

a. Design intercept + START + INTERIM + FINAL + CONTROL + START * INTERIM + START * FINAL + 

START * CONTROL + INTERIM * FINAL + INTERIM * CONTROL + FINAL * CONTROL + START * 

INTERIM * FINAL + START * INTERIM * CONTROL + START * FINAL * CONTROL + INTERIM * FINAL 

* CONTROL + START * INTERIM * FINAL * CONTROL 
b. Exact statistic 
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Table 5 shows calculated value of F(6, CBIAS:.279; CMAE: 1.69; CRMSE: 1.034)tested at 0.05 

alpha level. The null hypothesis one is accepted since the P-values are greater 0.05 alpha level (.95; .12; .40 

all >.05). This result connotes that premised on the conditional statistics, the initial score estimation methods 

(fixed, random and data) while applying no or using Progressively restricted item exposure controls for CAT 

has no significant effect on ability estimation precision at the interim of CAT while applying jumps and 

ranges with maximum likelihood or not using maximum likelihood estimation at the final stage of CAT using 

MLEF, MAP and EAP methods. 

 

 

4. DISCUSSION 

The simulated study shows no significant effects using MLEF, MAP, and EAP methods at the 

initial, interim and final stages of CAT ability estimation methods. This finding is supported by previous 

researchers [15], [21] stated that the comparison between maximum likelihood and Bayesian methods 

produces little difference in observed results but not without some implications [17], also reported an 

insignificant in the differences observed between weighted likelihood and Bayesian methods. This finding 

implies that the method used concerning ability estimation is essentially not an end but a means to an end. 

According to previous study [3], the maximum likelihood method (MLEF) can be used only when 

there is a mixed response pattern. On the other, Bayesian methods (MAP and EAP) can be used for any 

response pattern with less dependence on the item pool's optimality but rather on existing data from students 

with Bayesian methods [23]. This outcome strengthens the fact that a factor such as response pattern [3], and 

item pool [21] are determinant factors on the method chosen for ability estimation in designing a CAT 

program for educational testing. Further stressed was that a CAT requires additional considerations for ability 

estimation such as adaptivity, dimensions, consistency, and standards with implications for personalization in 

user environments and artificial intelligence [2]. Also worthy of note is the fact that Bayesian estimator are 

convenient with small-scaled tests and when ability levels are not extremely low [17]. This shows that CAT 

can be applied to school-based assessments rather than only standardized [31]. 

Despite the non-significance among the methods [10], maximum likelihood method treat person 

abilities as fixed effects which results into an undesirable estimation inconsistency which can be 

circumvented using bias correction methods. Furthermore, maximum likelihood estimates are deficient when 

estimates for response patterns occurs with items correct or all incorrect [1]. Bayesian ability estimations may 

be preferable over maximum likelihood estimators in CAT. They rely less on the selected item's item 

information, except a prior distribution obtained during the test [21]. Another drawback with maximum 

likelihood estimation method is that all item and person parameters are regarded as unknowns to be estimated 

resulting in the occasional non-existence of estimates and the bias of item parameter estimates [32]. 

Worthy of note, the non-significance across ability estimation methods recorded is also premised on 

the conditional statistics due to the equivalent design employed in terms of theta ranges and fixed test length. 

The non-significance recorded shows the need for consistency across CAT designs and the ease of replicating 

designs once conditions remain constant [13]. The discussions reveal that methodological choices for 

constructing CATs based on simulation procedures with empirical evidence allow test experts to identify the 

necessary characteristics of the CAT before actual administration to real examinees. 

 

 

5. CONCLUSION 

It can be concluded that while non-significance in ability estimation methods were recorded across 

the ML and Bayesian methods were recorded, Bayesian methods with a preference for EAP could be the 

right choice considering its flexibility with response patterns irrespective of the availability of an optimal 

item pool typical with early CAT programs as determinant factors. There are several recommendations 

stemming from this study. Bayesian methods with a preference for the EAP method should be used in 

designing early CAT programs with paper and pencil alternatives from which a prior distribution can be 

obtained. The peculiarity of the testing situation should inform methods chosen for the ability estimation of 

CAT. Equivalence of designs should be ensured when replicating CAT for a testing program. Hence, CAT 

design should be based on results from the simulation as furtherance research and analyses. 
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