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 The aim of this study was to examine the precision of item parameter 

estimation in different sample sizes and test lengths under three parameter 

logistic model (3PL) item response theory (IRT) model, where the trait 

measured by a test was not normally distributed or had a skewed 

distribution.In the study, number of categories (1-0), and item response 

model were identified as fixed conditions, and sample size, test length 

variables, and the ability distributions were selected as manipulated 

conditions. This is a simulation study. So data simulation and data analysis 

were done via packages in the R programming language. Results of the study 

showed that item parameter estimations performed under normal distribution 

were much stronger and bias-free compared to non-normal distribution. 

Moreover, the sample size had some limited positive effect on parameter 

estimation. However, the test length had no effect parameter estimation. As a 

result the importance of normality assumptions for IRT models were 

highlighted and findings were discussed based on relevant literature. 
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1. INTRODUCTION  

Researchers working in the fields of education and psychology have developed different 

measurement theories and models to explain the latent trait underlying individuals’ response to an item. One 

of the fundamental and still widely adopted examples is the Classical Test Theory (CTT), which aims to 

explain the score obtained from a test based on true and error scores. CTT contains easy-to-meet but weak 

assumptions. Despite CTT having served the field for many years, item and ability parameters being 

dependent on the group, difficulties in comparing individuals, and the presence of lower thresholds for 

reliability estimations [1] have led researchers to seek different measurement theories. Furthermore, 

discussions about true and observed scores used in CTT not having the same meaning as ability scores, and 

the literature concerning the necessity of ability scores to be independent from the test and the test items, 

contradicting the nature of CTT [2] have formed the foundations of a new theory. 

After CTT, item response theory (IRT) is one of the most important theories, which have a place in 

the history of psychometry. IRT is a powerful test theory that explains the latent traits of probabilistic models 

underlying an individual’s response to an item through much stronger assumptions compared to CTT [3, 4]. 

The three fundamental assumptions of IRT: unidimensionality, local independence, and monotonicity. 

In the literature on IRT, the assumption that there is predominantly a single latent feature underlying 

the response of testers to a group of items in the test is referred to as unidimensionality. Undoubtedly, other 

factors, such as cognitive function, excitement, and stress also affect the test performance of individuals. 
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Therefore, the predominant factor responsible for the test performance of individuals is considered to be the 

trait measured by the test [1, 5]. Mathematical models explaining the performance of individuals in test items 

using multiple latent traits are known as IRT models in the related literature. 

Local independence is the assumption that the probability of individuals responding to a test item in 

a certain way is independent of the probability of their response to other items in the same test, given that the 

latent trait measured by the test is kept constant. Although the literature contains specific mathematical 

calculations to meet this assumption, local independence is usually considered parallel to the 

unidimensionality assumption. This is because if the probability of individuals responding to each test item is 

independent of each other, then the only factor that explains the response probability is the latent trait 

measured by a single-factor test [5]. 

The last basic assumption of IRT is monotonicity, which is intertwined with the item characteristic 

curve. Unlike CTT, in IRT, the individuals’ ability and their probability to correctly respond to the items in 

the test are curvilinear, and this curvilinear relationship is displayed using the item characteristic curve (ICC). 

Researchers defining IRT as the non-linear regression of item performance on the trait measured by the test, 

stated that IRT assumed that as the ability of an individual increased, the probability of his/her correctly 

responding to the test items also monotonically increased [6]. 

 

 

2. UNIDIMENSIONAL ITEM RESPONSE THEORY MODELS  

In education and psychology fields, there are mathematical equations explaining the behavior and 

responses of individuals by associating independent variables and dependent variables based on  

the model concept. In IRT, models can be classified according to the number of parameters included, 

dimensionality, and scoring system [7] as well as depending on the type of mathematical function; e.g., 

normal ogive and logistic. 

The two-parameter normal ogive model, developed by Lord, is the first IRT model to explain the 

probability of an individual correctly responding to an item. This model explains the relationship between the 

probability of correctly responding to an item and the latent trait (Ѳ) using the areas under the normal 

distribution curve Figure 1is given that: the regression of the latent trait (Ѳ) on the individual’s function in 

the ith item (Yİ
’) is linear; the conditional distribution of Yİ’s are normal for each Ѳ value; and scatter of Yİ’s 

included in regression is homeostatic. The probability of an individual correctly responding to an item is 

explained using the following equation: Pi (θ) = ∫
1

√2π 
 e−x2/x. dx

𝑥

−∞
 

 

 

 
 

Figure 1. Normal ogive modelling 

 

 

In this equation, ai corresponds to (θ - bi). In this first model of IRT, the calculation of P(θ) value 

requires complex integral calculations [8], which cannot even be undertaken using computer technologies. 

Therefore, researchers have sought new functions that eliminate the need for such complex integral 

calculations. As a result of these efforts, logistics models that emerged from Birnbaum’s work in 1957 
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entered into the agenda of IRT. According to this model, the probability of an individual giving a correct 

response to an item can be expressed as: 

 

Pi (θ) = 
eDa(Ѳ−b)

1+eDa(Ѳ−b) (1) 

 

When the normal ogive and logistic function equations are examined, it is observed that the 

probability of an individual’s response to an item is estimated based on the ability and item parameters. In 

addition, these equations provide researchers with important information concerning the item parameters 

included in the test and the abilities of individuals taking the test. This information allows work to be 

undertaken in relation to test development and the revision of a developed test. In order for these attempts to 

produce accurate results, the parameters included in the model must be estimated with a minimum error. In 

the estimation of model parameters, various approaches are utilized, such as maximum likelihood (ML), 

marginal maximum likelihood (MML), joint maximum likelihood (JML), full information maximum 

likelihood (FIML), and maximum a posteriori (MAP). The basic assumption of all these approaches is that 

the trait measured by a test (Ѳ) is normally distributed [9-11]. However, since this normality assumption is 

very difficult to be met, it is often accepted as normal [12, 13]. It has been observed that in cases where the 

trait measured by the test moves away from a normal distribution, and especially in the presence of a skewed 

distribution, item and ability parameter estimations are seriously affected and biased estimations may occur 

[14-17]. In addition, it is reported that particularly in nominal response models, 40% of the variability in item 

parameter estimation was explained by the latent trait distribution [6, 18, 19]. 

An examination of the related literature shows that although the factors affecting item parameter 

estimation; e.g., number of items, sample size, correlation between factors have been frequently investigated, 

the effects of latent trait distribution have not been adequately addressed. It is revealed that in data sets with a 

skewed latent trait distribution, as the number of items and sample size increased, the parameter estimation 

bias was reduced [20]. Consistent with this finding was the study by Kirisci Hsu and Yu who determined that 

the estimation bias in data sets with a skewed latent trait distribution could be largely compensated in cases 

of 40 items and 1,000 samples and above [10].  

Throughout measurement history, various theories have been developed to explain the latent trait 

underlying the response of individuals to the items included in a measurement instrument. The aim of these 

theories is to perform an accurate and bias-free estimation of the parameters related to the items in the 

measurement tool and individuals responding to these items. In order to achieve these goals, such theories 

must meet some of their basic assumptions. Violations of these assumptions may cause significant problems 

in the estimation of the parameters mentioned above. The assumption of normal distribution, which is one of 

the basic assumptions of the substance response theory, is often one of the most difficult to be met. Thus, 

determining the accuracy (precision) and unbiasedness of estimation in cases where this assumption is met 

and is not met will make a significant contribution to the literature. In light of relevant literature and 

theoretical framework, the aim of this study was to examine the precision of item parameter estimation in 

different sample sizes and test lengths in cases where the trait measured by a test was not normally 

distributed or had a skewed distribution. 

 

 

3. RESEARCH METHOD 

This study aimed to examine the precision of item parameter estimation in different sample sizes 

and test lengths under non-normally distributed ability conditions. This is a simulation study. Simulation 

studies are computer experiments that involve creating data by pseudo‐random sampling from known 

probability distributions. They are an invaluable tool for statistical research, particularly for the evaluation of 

new methods and for the comparison of alternative methods [21]. On the other hand since the current study 

was based on a theory test under various conditions, it would also be defined as a pure or  

fundamental research. 

The data used in the research were produced using a simulation technique. The data were scored on 

a dichotomous basis (1-0) and prepared within the framework of the 3-P logistic model under IRT using the 

R programming language. When producing the data, it was ensured that the ability distribution was skewed. 

The results of the research were obtained by analyzing 100 replications of each condition. 

In the study, number of categories (1-0), and item response model were identified as fixed 

conditions, and sample size, test length variables and the ability distributions, were selected as  

manipulated conditions.  

For ability distribution, one of the independent variables selected in this study, the data were 

produced according to both normal and skewed distributions. In the normal distribution, ability distribution 
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was arranged to be mean = 0 and sd = 1. For the skewed distribution, the data were obtained in accordance 

with mean = 7 and sd = 2 using the “fGarch” package of R software. 

One of the conditions affecting item parameter estimation in IRT is the sample size. It is suggested 

that estimation bias in skewed ability distributions could be compensated under the conditions of 40 items 

and 1,000 samples and above. For this reason, the sample sizes in this study were selected as 250, 500 and 

1,000 [22]. 

In order to examine the effect of the test length variable under skewed ability distributions, 20-, 40- 

and 60-item test lengths were tested. As mentioned above, in the literature, it is stated that item parameter 

estimation errors in skewed distributions can be compensated when the test length is 40 items or above. 

Therefore, the test lengths of under and above 40 items were tested in this study.  

Data Analysis: Bias and RMSE (Root Mean Square Error) calculations were used to evaluate the 

accuracy or precision of the estimated item parameters.  

 

𝐵𝑖𝑎𝑠 =
∑ (𝑋̂𝑖 − 𝑋𝑖)

𝐾
𝑖=1

𝐾
 

𝑅𝑀𝑆𝐸 = √∑ (𝑋̂𝑖−𝑋𝑖)𝐾
𝑖=1

𝐾

2

 (2) 

 

Where K is the test length, 𝑋̂𝑖 refers to the estimated item parameter, and 𝑋𝑖 represents the actual  

item parameter. 

RMSE values being 0.05 or below indicates a good fit, while 0.10 or above indicates a poor fit of 

the model. Preferably, the bias value should be close to 0 [23-25]. 

 

 

4. RESULTS AND DISCUSSION 

The findings obtained within the framework of the research problem are summarized in this section. 

The bias and RMSE values of b parameter estimation performed using the 1-PL model under different test 

length and sample size conditions and normal/non-normal distribution are reported in Table 1, Figure 2  

and Figure 3.  

 

 

Table 1. The bias and RMSE values of the b parameter under the 1-PL model 
1 PL NORMAL DISTRIBUTION 1 PL NON-NORMAL DISTRIBUTION 

Sample 

Size 

Test 

Length 
Parameter Bias RMSE 

Sample 

Size 

Test 

Length 
Parameter Bias RMSE 

250 20 b -0.01 0.162 250 20 b -0.014 0.650 

250 40 b 0.001 0.162 250 40 b -0.003 0.624 

250 60 b -0.001 0.164 250 60 b -0.006 0.591 

500 20 b -0.003 0.115 500 20 b 0.012 0.600 

500 40 b -0.002 0.117 500 40 b 0.012 0.640 

500 60 b -0.002 0.118 500 60 b 0.001 0.627 

1000 20 b 0.001 0.008 1000 20 b 0.013 0.657 

1000 40 b -0.001 0.008 1000 40 b -0.012 0.643 

1000 60 b 0.001 0.009 1000 60 b 0.004 0.643 

 

 

 
 

Figure 2. The RMSE values of the b parameter under the 1-PL model 
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Figure 3. The bias values of the b parameters under the 1-PL model 

 

 

The results presented in Table 1, Figures 2 and Figure 3 reveal that the RMSE and bias values 

estimated under normal distribution were lower and more acceptable than those obtained under non-normal 

distribution. As the sample size increased under normal distribution, the RMSE values were lower, and the 

bias values were not clear. When the length of the test was examined under both distributions, although no 

clear effect could be observed in normal distribution under the 1- PL model, better fit values were achieved 

as the number of items increased in non-normal distribution. Furthermore, the increase in both sample size 

and test length was found to have a positive effect on model fit values.  

The bias and RMSE values of b and parameters estimation obtained using the 2-PL model based on 

different test lengths and sample sizes under normal and non-normal distributions are presented in  

Table 2, Figure 4 and Figure 5. 

 

 

Table 2. The bias and RMSE values of the a and b parameters under the 2-PL model 
2PL NON-NORMAL 2PL NORMAL 

Sample 

Size 

Test 

Length 
Bias a Bias b RMSE a RMSE b 

Sample 

Size 

Test 

Length 
Bias a Bias b RMSE a RMSE b 

250 

20 -0.74 0.418 0.790 0.454 

250 

20 0.023 -0.006 0.256 0.201 

40 -0.74 0.411 0.779 0.448 40 0.025 -0.007 0.239 0.204 

60 -0.73 0.437 0.772 0.476 60 0.023 0.005 0.238 0.196 

500 

20 -0.74 0.417 0.776 0.439 

500 

20 0.001 0.007 0.181 0.14 

40 -0.74 0.419 0.733 0.441 40 0.014 0.000 0.165 0.135 

60 -0.74 0.422 0.771 0.444 60 0.007 0.006 0.163 0.34 

1000 

20 -0.75 0.405 0.772 0.419 

1000 

20 0.012 -0.006 0.123 0.097 

40 -0.75 0.418 0.769 0.432 40 0.004 -0.005 0.118 0.09 

60 -0.74 0.420 0.766 0.434 60 0.006 0.001 0.116 0.095 

 

 

 
 

Figure 4. The RMSE values of the a and b parameters under the 2-PL model 
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Figure 5. The bias values of the a and b parameters under the 2-PL model 

 

 

According to the results given in Table 2 and Figure 4 and Figure 5, the RMSE and bias values of 

the a and b parameters estimated under normal distribution were more acceptable compared to those 

estimated under non-normal distribution. When the sample size variable was examined, it was observed that 

the RMSE and bias values were closer to 0, but the number of items did not have an effect that would result 

in consensus. Furthermore, the test length variable did not have a significant effect on model fit values. 

The bias and RMSE values of b, a and c parameters estimation obtained using the 3-PL model based 

on different test lengths and sample sizes under normal and non-normal distributions are presented in Table 

3, Table 4, Figure 6 and Figure 7. 

 

 

Table 3. The bias and RMSE values of the a and b parameters of the non-normally distributed data under  

the 3-PL model 
Sample Size Test Length Bias a Bias b Bias c RMSE a RMSE b RMSE c 

250 

20 0.451 -6.423 0.208 6.659 12.068 1.212 

40 -0.141 -7.096 0.210 7.739 13.795 1.196 

60 -0.15 -7.491 0.217 8.135 14.893 1.195 

500 

20 0.215 -4.761 0.215 4.436 9.054 1.186 

40 -0.427 -4.542 0.204 4.667 9.369 1.213 

60 -0.53 -5.068 0.209 5.067 10.464 1.201 

1000 

20 -0.457 -3.073 0.193 2.961 6.445 1.216 

40 -0.838 -3.291 0.192 3.288 7.174 1.218 

60 -0.924 -3.220 0.189 3.252 7.251 1.221 

 

 

Table 4. The bias and RMSE values of the a and b parameters of non-normally distributed data under  

the 3-PL model 
Sample Size Test Length Bias a Bias b Bias c RMSE a RMSE b RMSE c 

250 

20 0.284 -0.278 0.052 0.683 2.069 1.344 

40 0.284 -0.23 0.052 0.598 1.996 1.335 

60 0.303 -0.27 0.057 0.647 2.015 1.341 

500 

20 0.148 -0.138 0.036 0.342 1.872 1.349 

40 0.145 -0.162 0.040 0.318 1.870 1.344 

60 0.153 -0.152 0.041 0.317 1.844 1.348 

1000 

20 0.084 -0.082 0.029 0.229 1.716 1.361 

40 0.088 -0.083 0.029 0.206 1.794 1.357 

60 0.100 -0.105 0.030 0.208 1.78 1.356 
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Figure 6. The RMSE values of the a, b and c parameters under the 3-PL model 

 

 

 
 

Figure 7. The bias values of the a, b and c parameters under the 3-PL model 

 

 

Similar to the previous results, the RMSE and bias values of the a, b and c parameters estimated 

under normal distribution using the 3-PL model were much more acceptable than those estimated under non-

normal distribution (Tables 3 and 4, Figure 6 and Figure7). Concerning the sample size variable, the  

RMSE and bias values were closer to 0, and the number of items had no significant on model fit values. As 

the sample size increased, the item discrimination parameter under both distributions produced more  

positive results. 

 

 

5. DISCUSSION 

In this study, the strength and bias of item parameter estimation were examined under two 

conditions by meeting and violating the normality distribution, one of the most important assumptions of 

IRT. The results obtained are discussed in relation to the literature.  

The most significant result of this study was that item parameter estimations performed under 

normal distribution were much stronger and bias-free compared to non-normal distribution. There were very 

significant differences in the bias and RMSE values between the two distributions.  

This finding is supported by other studies in the relevant literature [14-17]. To estimate  

the parameters of a test in IRT, various approached are adopted, such as ML, MML, JML, FIML, and MAP. 

The basic assumption of these approaches is that the trait measured by the test (Ѳ) is normally distributed  

[9-11]. This is the main reason why the RMSE and bias values were much more acceptable in the case of 

normal distribution.  

Examining the variables of sample size and number of items, it could not be determined whether 

they had a consistently valid effect on each parameter in any of the conditions tested in this study. When the 

item difficulty parameter was positively affected by sample size in one model, the a parameter was more 

prominent in another estimation. It is reported that in data sets with a skewed latent trait distribution, as the 

number of items and sample size increased, parameter estimation bias was reduced [20]. In parallel to this, 
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Researchers determined that the estimation bias in data sets with a skewed latent trait distribution could be 

largely compensated in cases of 40 items and 1,000 samples or above [10, 22].  

Although the findings of this study partially supported the relevant literature, no significant 

parallelism was found. This can be attributed to the differences in the data used. Although studies conducted 

with normally distributed data present similar results, the findings may differ in those based on data with a 

non-normal distribution. The conditions of the current study were different from other publications in the 

literature conducted under skewed distribution conditions. Thus, researchers using IRT should consider the 

structure of the ability distribution of the data when reporting the results of parameter estimation. 

This study can be repeated in different conditions to further contribute to the literature. In addition, 

in recent years, IRT models that can be used in cases where the normality assumption is not met have been 

proposed in the literature. An example of this is the Ramsey Curve IRT model. In the future, studies can be 

conducted using this model to compare the results with the literature. 

 

 

6. CONCLUSION  

Results showed that item parameter estimations performed under normal distribution were much 

stronger and bias-free compared to non-normal distribution. There were very significant differences in the 

bias and RMSE values between the two distributions. Furhtermore the sample size had some limited positive 

effect on parameter estimation. However, the test length had no effect parameter estimation. 
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